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The Scenario

• Imagine your enterprise is an existing WebSphere MQ user or sends 
messages across other transports.

• Maybe WebSphere Message Broker is pulling in data from another 
source

• Another part of the organisation has started using WebSphere 
Application Server, and now wants to use the data that already exists 
in other applications. 

• How do you do this?

WebSphere MQ

WebSphere
Application

Server

?



The Scenario

• WebSphere Application Server is a fully compliant Java 
Enterprise Edition (JEE) Application Server.
• Provides integrated support to connect to Java Message 

Service (JMS) providers.

• WebSphere MQ is a fully compliant JMS provider.

• WebSphere Message Broker can route messages across 
any JMS 1.1 compliant provider

• Therefore, JMS is the answer!



Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker



Initial Setup
Queue Manager

• The good news is that there isn’t much setup required on 
the queue manager.

• If the application server is on a different machine to the 
queue manager, setup as for other client applications :
• Start a listener
• Create a SVRCONN channel.

• If the application server is on the same machine as WMQ, 
you don’t need to do anything!
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• Contains information about how to connect to a queue 
manager.
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Initial Setup
Connection Factories

• Need to be defined using WebSphere Administrative 
Console.

• A handy wizard helps through the creation process.
• Also provides the ability to verify the Connection Factory has 

been defined correctly, by trying to connect to the specified 
queue manager.



Initial Setup
Connection Factories



Initial Setup
Connection Factories

• WebSphere Application Server supports three types:
• Queue Connection Factory

• Used by applications that are going to be sending and receiving 
messages to and from queues (point-to-point messaging).

• Topic Connection Factory
• Used by publish/subscribe applications.

• Unified Connection Factory
• Can be used by either point-to-point or publish/subscribe 

applications.



Initial Setup
Connection Factories

• Important properties:
• Queue Manager Name
• Transport Type

• BINDINGS
• Used when WebSphere Application Server is on the same machine 

as the queue manager. 
• CLIENT

• Used when WebSphere Application Server is on a different machine 
to the queue manager.

• BINDINGS_THEN_CLIENT
• Special option useful when you are not sure if the application is 

running on the same machine as the queue manager or not.
• Hostname
• Server Channel Name



Initial Setup
Connection Factories

• WebSphere Application Server also provides Connection 
Pooling.
• One Connection Pool per Connection Factory.
• Used when an application creates a JMS Connection from a 

Connection Factory.
• By default, only 10 connections can be created to a queue 

manager from a given Connection Factory.



Initial Setup
Connection Factories
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Initial Setup
Connection Factories
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Initial Setup
Destinations

• JMS Destinations map to either queues or topics.
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Initial Setup
Destinations

• Need to be defined using WebSphere Administrative 
Console.

• Should have one Destination definition for every queue or 
topic used by applications running inside of the application 
server.

• Important properties:
• Queue Name
• Topic Name



Initial Setup
Destinations
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Initial Setup
Activation Specifications

• Standard mechanism for listening for messages on JMS 
destinations.

• Contain information to create a connection to a specified 
queue or topic on a queue manager. 

• Based on the J2EE Connector Architecture (JCA) 1.5 
standard. 

• Provides a common way for all JEE 1.4 compliant 
application servers to connect to JMS providers.



Initial Setup
Activation Specifications

• To create an Activation Specification.
• Specify the JMS Destination to listen on.
• Enter details of the queue manager where the Destination 

resides.
• Optionally, specify a JMS Message Selector.

• SQL expression. 
• Only messages that match the Selector will be delivered to 

applications using this Activation Specification.
• A handy wizard takes you through all of the necessary steps, 

and checks it works too!.



Initial Setup
Activation Specifications



Initial Setup
Activation Specifications
• By default, applications that use the Activation Specification 

will process 10 messages concurrently.
• To change this, modify the Activation Specification Advanced 

Property Maximum server sessions.
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Application Development

• JEE applications are known as Enterprise Applications, 
and are stored in Enterprise Application Archives (EARs).

• Can consist of multiple parts:
• Message-driven beans
• Enterprise Java Beans
• Servlets
• Static web pages



Application Development
Message-driven beans

• Message-driven beans (MDBs) are JMS applications that 
get called when a message arrives on a given destination.
• Similar to WMQ triggered applications.

• Recommended way of getting WMQ messages into WAS.

• Application developer only has to worry about the business 
logic required to process the message. 
• Application server handles the actual detection and delivery 

of the message.



Application Development
Message-driven beans

• MDBs must implement a method called onMessage().
• This is called when a message is detected on the specified 

destination.
• Message is passed into the method.
• onMessage() simply needs to contain the code to process it.
• Application Server handles all transaction management.

• IBM Rational tooling provides wizards for creating MDBs.



Application Development
Message-driven beans

 public void onMessage(Message message) {
    try
    {
       System.out.println("In onMessage()");
        
       if (message instanceof TextMessage)
       {
          TextMessage textMsg = (TextMessage)message;
          System.out.println("Message text is " + textMsg.getText());
       }
    }
    catch (JMSException ex)
    {
       System.out.println("JMSException occurred : " + ex);
    }
 }
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Application Development
Enterprise Java Beans

• Java applications that run inside of WAS.

• EJBs need to create their own connections to WMQ and 
get (or send) messages themselves. 
• EJBs use the standard JMS API.
• Can be easier than MDBs when handling responses in 

request-reply messaging
• Application server still handles transaction management, 

based on values specified in the application’s deployment 
descriptor.



Application Development
Enterprise Java Beans

  public void receiveMessage()
 {
    try
    {
       InitialContext ctx = new InitialContext();
       ConnectionFactory cf = (ConnectionFactory) ctx.lookup(“connectionFactory”);
       Connection conn = cf.createConnection();
       conn.start();
       Session sess = conn.createSession(true, Session.AUTO_ACKNOWLEDGE);

       Queue d = (Queue) ctx.lookup(“queueDestination”);
       MessageConsumer consumer = sess.createConsumer(d);
       int timeout = 30000;
       Message msg = consumer.receive(timeout);
       if (msg instanceof TextMessage)
       {
          TextMessage textMessage = (TextMessage) msg;
          System.out.println(“Message received:“ + textMessage.getText());
       }
       consumer.close();
       sess.close();
       conn.close();  
    }
    catch (Exception ex)
    {
       System.out.println("Error getting the connection factory");
       System.out.println("Exception : " + ex);
    }
 }
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Application Deployment

• The final step is to deploy the application into the 
application server.

• As part of the message-driven bean deployment process, 
you need to tell the application which Activation 
Specification to use, which determines the queues and 
queue managers to monitor. 



Application Deployment



Application Deployment

• If the application has been deployed against an Activation 
Specification, simply start the application to start 
processing messages.

• If deployed against a Listener Port, a full application server 
restart might be required!

• And that’s it!
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JMS in Message Broker

• Support for any JMS 1.1 compliant provider not just MQ

• 6 JMS specific nodes for JMS
• JMSInput
• JMSOutput / JMSReply
• JMSMQTransform
• MQJMSTransform
• JMSHeader

• Also support for JMS on SOAP nodes for SOAP over JMS

• Point to Point + Publish Subscribe



JMS Message Structure

• JMS Messages are not like bit stream wire format messages
• JMS Messages are Java objects

• Message Broker translates the Java object into our logical message 
tree

• The payload is stored in the 
body in the same way as 
with wire format messages



Configuring JMS Input Node
• Point 2 Point or Publish Subscribe message consumer
• Responsible for creating JMS tree from JMS input message
• Hands payload to appropriate broker parser
• Connection Properties

• Initial Context factory
• Location JNDI bindings

• Points to JNDI administered objects
• LDAP required userId and password

• ConnectionFactory identified
• Backout Destination & Threshold – must be configured
• Message selectors available if filtering required



Configuring the JMS Output/Reply Node
• Point to Point or Publish Subscribe message producer
• Responsible for creating JMS output message from JMS tree
• JMS Connection values similar to JMSInput

• No backout details
• If you have a JMSInput node in the same the JMSOutput/Reply node does not have 

to use the same provider
• JMSReply node just sends its message to the destination in the JMSReplyTo 

header
• JMSOutput node can either send to a queue or a publish to a topic

• Reply to destination settable for request messages



JMSHeader node 

• Code-free way to create/update/delete JMS headers
• Subset of common values can be changed
• Application properties can be added or deleted

• Static or dynamic values using XPath



Configuration steps for any JMS provider
• Ensure JMS Provider jars available to the broker

• Either place them in the shared-classes directory under the broker’s workpath
• Linux/Unix default: /var/mqsi/shared-classes
• Windows default: C:\Documents and Settings\All Users\Application 

Data\IBM\MQSI\shared-classes
• z/OS: <broker component directory>/shared-classes

• Or use the jarsURL property on the JMSProvider configurable service
• Add any JMS Provider native libraries to Broker’s LIBPATH
• You can secure your JMS connections and JNDI lookups

• JMS connection:
• mqsisetdbparms <broker Name> -n jms::<Connection Factory Name> -u myuserid -p secret

• JNDI lookup
• mqsisetdbparms <broker Name> -n jndi::<Initial Context Factory> -u myuserid -p secret

• Use JMSProvider configurable service to override the JMS connection 
properties on the node

• Also useful to enable provider specific JMS options as not all JMS 1.1 
compliant supplier implement the  spec in the same way

• JBOSS uses asynchronous exception handling
• BEAWeblogic requires extra parameters for XA



JMSProviders configurable service



WMB JMS Extras
• SOAP over JMS

• SOAP over Java Message Service 1.0 is a specification that describes how 
SOAP can bind to a messaging system that supports the Java Message 
Service 

• Use WSDL definitions with JMS Bindings
<soap:address location="jms:jndi:REPLYTOQ2?

jndiConnectionFactoryName=QCF&amp;
jndiInitialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory&amp;
jndiURL=file:/C:/mqsi6/webservices/SOAP/JMS/JNDI&amp;
targetService=SOAPJMSGenMessageSetSOAP_JMS_Service&amp;
timeToLive=30000"/>

• Supported across all WMB SOAP Nodes

• Coordinated transaction support
• XA on distributed

• Only if the JMS Provider supports the XA/Open interface
• RRS on z/OS when using the MQ Java Client and connecting in Bindings mode



Any questions?

• If you have any questions, or ideas for future topics, feel 
free to email us at sgormley@uk.ibm.com or 
dcoles@uk.ibm.com
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Demo Slides

• With an existing MQ Queue manager, and WebSphere 
Application Server instance running, we start by defining a JMS 
queue resource via the WebSphere Administration Console



Demo Slides

• Click on New, then select the 
WMQ JMS provider, and 
click OK

• Fill in the destination details, 
and click OK.



Demo Slides

• Create a new WMQ JMS 
Activation Specification. Click 
on JMS, Activation 
Specifications, then New, 
and select the WMQ JMS 
Provider. Fill in the name 
details, and click Next.

• Select the JMS destination to 
use, for example, the 
destination just created. The 
message selector (filter) can 
also be specified here.



Demo Slides

• Select the connection 
method, for example, 
entering all the information to 
the wizard.

• Enter the Queue Manager 
name



Demo Slides

• Enter the connection details

• Test the connection, which 
should return successfully!

• Click Next, Finish and then 
Save to store the information



Demo Slides

• In Rational Application 
Developer, create a new EJB 
Project

• Specify a project name, the 
target application server, and 
ensure a EAR project is also 
specified/created.



Demo Slides

• There’s no need to create a 
EJB Client. Click Finish.

• Right click on the EJB 
project, and create a new 
Message-Driven Bean.



Demo Slides

• Enter the MDB Java package 
name and class name to be 
created. Click Finish.

• In the MDB, enter the 
business logic code into the 
onMessage method. (This 
code would require the 
following Java import 
statements:

import javax.jms.JMSException;
import javax.jms.TextMessage;



Demo Slides

• Right click on the EAR 
project, and export the EAR 
file, ensuring the file ends 
with “.ear”.



Demo Slides

• In the WAS Administration 
Console, click Applications, 
Application Types, 
WebSphere enterprise 
applications, and then the 
“Install” button

• Locate the newly created .ear 
file, and click Next. Then 
choose “Fast Path”



Demo Slides

• It is possible to skip over 
Steps 1 and 2, and click on 
Step 3.

• Enter the Activation 
Specification created earlier, 
and click Next, then Finish. 

• Then save the application to 
the master configuration.



Demo Slides

• The application is now 
deployed! Select it, and click 
the Start button to get it 
running. 

• You can now put a test 
message to the queue, and 
for this application, see the 
result in the Application 
Server SystemOut.log.
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