
Simon Gormley – WebSphere MQ JMS Level 3 Service,
IBM Hursley, sgormley@uk.ibm.com

David Coles – WebSphere Message Broker Level 3 Service,
IBM Hursley – dcoles@uk.ibm.com

Thursday 3rd March 2011

Getting WMQ messages into WebSphere
Application Server (including from
WebSphere Message Broker)

Session 8714

mailto:sgormley@uk.ibm.com
mailto:sgormley@uk.ibm.com
mailto:dcoles@uk.ibm.com

Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker

The Scenario

• Imagine your enterprise is an existing WebSphere MQ user or sends
messages across other transports.

• Maybe WebSphere Message Broker is pulling in data from another
source

• Another part of the organisation has started using WebSphere
Application Server, and now wants to use the data that already exists
in other applications.

• How do you do this?

WebSphere MQ

WebSphere
Application

Server

?

The Scenario

• WebSphere Application Server is a fully compliant Java
Enterprise Edition (JEE) Application Server.
• Provides integrated support to connect to Java Message

Service (JMS) providers.

• WebSphere MQ is a fully compliant JMS provider.

• WebSphere Message Broker can route messages across
any JMS 1.1 compliant provider

• Therefore, JMS is the answer!

Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker

Initial Setup
Queue Manager

• The good news is that there isn’t much setup required on
the queue manager.

• If the application server is on a different machine to the
queue manager, setup as for other client applications :
• Start a listener
• Create a SVRCONN channel.

• If the application server is on the same machine as WMQ,
you don’t need to do anything!

Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker

WebSphere
Application
Server

Initial Setup
Connection Factories

• Contains information about how to connect to a queue
manager.

QM2

QM1

MyApplication

JNDI
CF1

CF2

CF1

Initial Setup
Connection Factories

• Need to be defined using WebSphere Administrative
Console.

• A handy wizard helps through the creation process.
• Also provides the ability to verify the Connection Factory has

been defined correctly, by trying to connect to the specified
queue manager.

Initial Setup
Connection Factories

Initial Setup
Connection Factories

• WebSphere Application Server supports three types:
• Queue Connection Factory

• Used by applications that are going to be sending and receiving
messages to and from queues (point-to-point messaging).

• Topic Connection Factory
• Used by publish/subscribe applications.

• Unified Connection Factory
• Can be used by either point-to-point or publish/subscribe

applications.

Initial Setup
Connection Factories

• Important properties:
• Queue Manager Name
• Transport Type

• BINDINGS
• Used when WebSphere Application Server is on the same machine

as the queue manager.
• CLIENT

• Used when WebSphere Application Server is on a different machine
to the queue manager.

• BINDINGS_THEN_CLIENT
• Special option useful when you are not sure if the application is

running on the same machine as the queue manager or not.
• Hostname
• Server Channel Name

Initial Setup
Connection Factories

• WebSphere Application Server also provides Connection
Pooling.
• One Connection Pool per Connection Factory.
• Used when an application creates a JMS Connection from a

Connection Factory.
• By default, only 10 connections can be created to a queue

manager from a given Connection Factory.

Initial Setup
Connection Factories

Connection Factory 1

Connection Connection

Connection Pool

Session Pool Session Pool

Session Session

Connection Factory 2

Connection

Connection Pool

Session Pool

Session

Initial Setup
Connection Factories

Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker

Initial Setup
Destinations

• JMS Destinations map to either queues or topics.

WebSphere
Application
Server

QM1

MyApplication

JNDI

CF1

QD1

Q1

CF1

QD1

Initial Setup
Destinations

• Need to be defined using WebSphere Administrative
Console.

• Should have one Destination definition for every queue or
topic used by applications running inside of the application
server.

• Important properties:
• Queue Name
• Topic Name

Initial Setup
Destinations

Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker

Initial Setup
Activation Specifications

• Standard mechanism for listening for messages on JMS
destinations.

• Contain information to create a connection to a specified
queue or topic on a queue manager.

• Based on the J2EE Connector Architecture (JCA) 1.5
standard.

• Provides a common way for all JEE 1.4 compliant
application servers to connect to JMS providers.

Initial Setup
Activation Specifications

• To create an Activation Specification.
• Specify the JMS Destination to listen on.
• Enter details of the queue manager where the Destination

resides.
• Optionally, specify a JMS Message Selector.

• SQL expression.
• Only messages that match the Selector will be delivered to

applications using this Activation Specification.
• A handy wizard takes you through all of the necessary steps,

and checks it works too!.

Initial Setup
Activation Specifications

Initial Setup
Activation Specifications
• By default, applications that use the Activation Specification

will process 10 messages concurrently.
• To change this, modify the Activation Specification Advanced

Property Maximum server sessions.

Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker

Application Development

• JEE applications are known as Enterprise Applications,
and are stored in Enterprise Application Archives (EARs).

• Can consist of multiple parts:
• Message-driven beans
• Enterprise Java Beans
• Servlets
• Static web pages

Application Development
Message-driven beans

• Message-driven beans (MDBs) are JMS applications that
get called when a message arrives on a given destination.
• Similar to WMQ triggered applications.

• Recommended way of getting WMQ messages into WAS.

• Application developer only has to worry about the business
logic required to process the message.
• Application server handles the actual detection and delivery

of the message.

Application Development
Message-driven beans

• MDBs must implement a method called onMessage().
• This is called when a message is detected on the specified

destination.
• Message is passed into the method.
• onMessage() simply needs to contain the code to process it.
• Application Server handles all transaction management.

• IBM Rational tooling provides wizards for creating MDBs.

Application Development
Message-driven beans

 public void onMessage(Message message) {
 try
 {
 System.out.println("In onMessage()");

 if (message instanceof TextMessage)
 {
 TextMessage textMsg = (TextMessage)message;
 System.out.println("Message text is " + textMsg.getText());
 }
 }
 catch (JMSException ex)
 {
 System.out.println("JMSException occurred : " + ex);
 }
 }

Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker

Application Development
Enterprise Java Beans

• Java applications that run inside of WAS.

• EJBs need to create their own connections to WMQ and
get (or send) messages themselves.
• EJBs use the standard JMS API.
• Can be easier than MDBs when handling responses in

request-reply messaging
• Application server still handles transaction management,

based on values specified in the application’s deployment
descriptor.

Application Development
Enterprise Java Beans

 public void receiveMessage()
 {
 try
 {
 InitialContext ctx = new InitialContext();
 ConnectionFactory cf = (ConnectionFactory) ctx.lookup(“connectionFactory”);
 Connection conn = cf.createConnection();
 conn.start();
 Session sess = conn.createSession(true, Session.AUTO_ACKNOWLEDGE);

 Queue d = (Queue) ctx.lookup(“queueDestination”);
 MessageConsumer consumer = sess.createConsumer(d);
 int timeout = 30000;
 Message msg = consumer.receive(timeout);
 if (msg instanceof TextMessage)
 {
 TextMessage textMessage = (TextMessage) msg;
 System.out.println(“Message received:“ + textMessage.getText());
 }
 consumer.close();
 sess.close();
 conn.close();
 }
 catch (Exception ex)
 {
 System.out.println("Error getting the connection factory");
 System.out.println("Exception : " + ex);
 }
 }

Agenda

• The Scenario
• Initial Setup

• Queue Manager
• Connection Factories
• Destinations
• Activation Specifications

• Application Development
• Message-driven beans (MDBs)
• Enterprise Java Beans (EJBs)

• Application Deployment
• JMS in WebSphere Message Broker

Application Deployment

• The final step is to deploy the application into the
application server.

• As part of the message-driven bean deployment process,
you need to tell the application which Activation
Specification to use, which determines the queues and
queue managers to monitor.

Application Deployment

Application Deployment

• If the application has been deployed against an Activation
Specification, simply start the application to start
processing messages.

• If deployed against a Listener Port, a full application server
restart might be required!

• And that’s it!

Simon Gormley – WebSphere MQ JMS Level 3 Service,
IBM Hursley, sgormley@uk.ibm.com

David Coles – WebSphere Message Broker Level 3 Service,
IBM Hursley – dcoles@uk.ibm.com

Thursday 3rd March 2011

Getting WMQ messages into WebSphere
Application Server (including from
WebSphere Message Broker)

mailto:sgormley@uk.ibm.com
mailto:sgormley@uk.ibm.com
mailto:dcoles@uk.ibm.com

JMS in Message Broker

• Support for any JMS 1.1 compliant provider not just MQ

• 6 JMS specific nodes for JMS
• JMSInput
• JMSOutput / JMSReply
• JMSMQTransform
• MQJMSTransform
• JMSHeader

• Also support for JMS on SOAP nodes for SOAP over JMS

• Point to Point + Publish Subscribe

JMS Message Structure

• JMS Messages are not like bit stream wire format messages
• JMS Messages are Java objects

• Message Broker translates the Java object into our logical message
tree

• The payload is stored in the
body in the same way as
with wire format messages

Configuring JMS Input Node
• Point 2 Point or Publish Subscribe message consumer
• Responsible for creating JMS tree from JMS input message
• Hands payload to appropriate broker parser
• Connection Properties

• Initial Context factory
• Location JNDI bindings

• Points to JNDI administered objects
• LDAP required userId and password

• ConnectionFactory identified
• Backout Destination & Threshold – must be configured
• Message selectors available if filtering required

Configuring the JMS Output/Reply Node
• Point to Point or Publish Subscribe message producer
• Responsible for creating JMS output message from JMS tree
• JMS Connection values similar to JMSInput

• No backout details
• If you have a JMSInput node in the same the JMSOutput/Reply node does not have

to use the same provider
• JMSReply node just sends its message to the destination in the JMSReplyTo

header
• JMSOutput node can either send to a queue or a publish to a topic

• Reply to destination settable for request messages

JMSHeader node

• Code-free way to create/update/delete JMS headers
• Subset of common values can be changed
• Application properties can be added or deleted

• Static or dynamic values using XPath

Configuration steps for any JMS provider
• Ensure JMS Provider jars available to the broker

• Either place them in the shared-classes directory under the broker’s workpath
• Linux/Unix default: /var/mqsi/shared-classes
• Windows default: C:\Documents and Settings\All Users\Application

Data\IBM\MQSI\shared-classes
• z/OS: <broker component directory>/shared-classes

• Or use the jarsURL property on the JMSProvider configurable service
• Add any JMS Provider native libraries to Broker’s LIBPATH
• You can secure your JMS connections and JNDI lookups

• JMS connection:
• mqsisetdbparms <broker Name> -n jms::<Connection Factory Name> -u myuserid -p secret

• JNDI lookup
• mqsisetdbparms <broker Name> -n jndi::<Initial Context Factory> -u myuserid -p secret

• Use JMSProvider configurable service to override the JMS connection
properties on the node

• Also useful to enable provider specific JMS options as not all JMS 1.1
compliant supplier implement the spec in the same way

• JBOSS uses asynchronous exception handling
• BEAWeblogic requires extra parameters for XA

JMSProviders configurable service

WMB JMS Extras
• SOAP over JMS

• SOAP over Java Message Service 1.0 is a specification that describes how
SOAP can bind to a messaging system that supports the Java Message
Service

• Use WSDL definitions with JMS Bindings
<soap:address location="jms:jndi:REPLYTOQ2?

jndiConnectionFactoryName=QCF&
jndiInitialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory&
jndiURL=file:/C:/mqsi6/webservices/SOAP/JMS/JNDI&
targetService=SOAPJMSGenMessageSetSOAP_JMS_Service&
timeToLive=30000"/>

• Supported across all WMB SOAP Nodes

• Coordinated transaction support
• XA on distributed

• Only if the JMS Provider supports the XA/Open interface
• RRS on z/OS when using the MQ Java Client and connecting in Bindings mode

Any questions?

• If you have any questions, or ideas for future topics, feel
free to email us at sgormley@uk.ibm.com or
dcoles@uk.ibm.com

mailto:sgormley@uk.ibm.com
mailto:sgormley@uk.ibm.com
mailto:dcoles@uk.ibm.com

Demo Slides

• With an existing MQ Queue manager, and WebSphere
Application Server instance running, we start by defining a JMS
queue resource via the WebSphere Administration Console

Demo Slides

• Click on New, then select the
WMQ JMS provider, and
click OK

• Fill in the destination details,
and click OK.

Demo Slides

• Create a new WMQ JMS
Activation Specification. Click
on JMS, Activation
Specifications, then New,
and select the WMQ JMS
Provider. Fill in the name
details, and click Next.

• Select the JMS destination to
use, for example, the
destination just created. The
message selector (filter) can
also be specified here.

Demo Slides

• Select the connection
method, for example,
entering all the information to
the wizard.

• Enter the Queue Manager
name

Demo Slides

• Enter the connection details

• Test the connection, which
should return successfully!

• Click Next, Finish and then
Save to store the information

Demo Slides

• In Rational Application
Developer, create a new EJB
Project

• Specify a project name, the
target application server, and
ensure a EAR project is also
specified/created.

Demo Slides

• There’s no need to create a
EJB Client. Click Finish.

• Right click on the EJB
project, and create a new
Message-Driven Bean.

Demo Slides

• Enter the MDB Java package
name and class name to be
created. Click Finish.

• In the MDB, enter the
business logic code into the
onMessage method. (This
code would require the
following Java import
statements:

import javax.jms.JMSException;
import javax.jms.TextMessage;

Demo Slides

• Right click on the EAR
project, and export the EAR
file, ensuring the file ends
with “.ear”.

Demo Slides

• In the WAS Administration
Console, click Applications,
Application Types,
WebSphere enterprise
applications, and then the
“Install” button

• Locate the newly created .ear
file, and click Next. Then
choose “Fast Path”

Demo Slides

• It is possible to skip over
Steps 1 and 2, and click on
Step 3.

• Enter the Activation
Specification created earlier,
and click Next, then Finish.

• Then save the application to
the master configuration.

Demo Slides

• The application is now
deployed! Select it, and click
the Start button to get it
running.

• You can now put a test
message to the queue, and
for this application, see the
result in the Application
Server SystemOut.log.

	Slide 1
	Agenda
	The Scenario
	Slide 4
	Slide 5
	Initial Setup Queue Manager
	Slide 7
	Initial Setup Connection Factories
	Initial Setup Connection Factories
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Initial Setup Destinations
	Slide 18
	Slide 19
	Slide 20
	Initial Setup Activation Specifications
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Application Development
	Application Development Message-driven beans
	Slide 28
	Slide 29
	Slide 30
	Application Development Enterprise Java Beans
	Slide 32
	Slide 33
	Application Deployment
	Slide 35
	Slide 36
	Slide 37
	JMS in Message Broker
	JMS Message Structure
	Configuring JMS Input Node
	Configuring the JMS Output/Reply Node
	 JMSHeader node
	Configuration steps for any JMS provider
	JMSProviders configurable service
	WMB JMS Extras
	Any questions?
	Demo Slides
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

